

Diaz-Calderon, A. / Towards a Unified Representation of Mechanisms for Robotic Control Software, pp. xx - yy
International Journal of Advanced Robotic Systems, Volume y, Number x (200x), ISSN 1729-8806

Towards a Unified Representation of Mechanisms for Robotic Control
Software

Antonio Diaz-Calderon, Issa A. D. Nesnas, Won S. Kim and Hari Das Nayar
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

({first.last}@jpl.nasa.gov)
OphirTech, Altadena, CA, USA,

(hari@ophirtech.com)

Abstract: This article gives an overview of the Mechanism Model paradigm. The mechanism model paradigm provides
a framework to modeling mechanisms for robotic control. The emphasis is on the unification of mathematical models of
kinematics/dynamics, geometric information and control system parameters of a variety of robotic systems (including
serial manipulators, wheeled and legged locomotors), with algorithms needed for typical robot control applications.
Keywords:unified mechanism model, real-time control, serial manipulator, wheeled mechanisms, kinematics, dynamics.

1. Introduction

The work presented in this paper describes 1) a unified
approach for modeling the geometric and dynamic
properties of a variety of robotic systems and 2) generic
algorithms that operate on the model to perform common
analyses needed in the control of such systems. The goal
of this work is to provide a common representation for
describing mechanical systems including robotic arms
and wheeled and legged vehicles and provide built-in
algorithmic functionality (for example, forward and
inverse kinematics and collision detection) needed for
typical robot control applications.
The implementation of this approach will provide the
Coupled Layer Architecture for Robotic Autonomy
(CLARAty) (Volpe, Nesnas, Estlin, Mutz, Petras & Das,
2001), (Nesnas, Wright, Bajracharya, Simmons & Estlin,
2003), (CLARAty, 2005) on-board software with a more
generic infrastructure for mechanism modeling and
analysis. The modeling software covers mobility
mechanisms, robotic arms, rover masts, and mechanical
legs. The modeling software will provide the necessary
information for real-time computation of kinematics,
dynamics, and collision prediction.

1.1. Motivation
Current implementations of kinematic and geometric
descriptions of mechanisms have different representation

paradigm, which makes sharing kinematic and dynamic
information very difficult. Furthermore, it is desirable for
some applications to treat the mechanism as a whole
body (for instance when dealing with rover-arm
coordination algorithms). Some other applications may
require the treatment of appendages as separate elements.
For instance when controlling a rover and a mast with
panoramic cameras.
A modeling paradigm that supports both views of
mechanism control and that provides for simplicity of
information sharing
A unified modeling approach has the following
advantages:

• Allows re-use of kinematic/dynamic and
geometric information for a variety of robotic
systems. Particular implementations will be
instiated by reading in model files that specify
detailed description of a specific robotic system.

• Provides centralized storage for managing
model information. This includes creation,
deletion, update, extension and reconfiguration
of the mechanical models.

• Ensures consistency of the model information
for use by multiple algorithms. This simplifies
the integration of algorithms into the software
architecture.

XX

• Reduces duplication in model representation
between rover mobility and manipulation
software.

• Enables the development of generic algorithms
for forward, inverse, and differential
kinematics. In the absence of specialized
versions, the generic algorithms provide out-of-
the-box functionality.

• Supports specific implementations to override
generic algorithms whenever appropriate for
optimal performance.

• Enables the verification of specialized
kinematics algorithms against their generic
counterparts.

• Supports a variety of data input models such as
Denavit-Hartenberg and zero configuration.

This article contains software requirements for
developing a unified mechanical model. It also contains
requirements for algorithms and describes the interaction
of the models with the rest of the on-board robotic
software. In this paper, the term “mechanism” refers to
any mechanical system and does not imply a closed loop
mechanical chain.

1.2. Related work
Attempts at creating a unified representation for
mechanism are limited. The approaches found in the
literature can be used to describe robotic systems from a
number of system attributes, e.g., kinematic, geometric
etc.
The most notable approaches are the DARTS/Dshell
(Jain, 1991), (Rodriguez, Kreutz-Delgado & Jain, 1991),
the Open Robot Control Software Kinematics Pagkage
(OROCOS, 2005), the Operational Software
Components for Advanced Robotics (OSCAR, 2005),
(Kapoor & Tesar, 1998), RoboML (RoboML, 2005),
(Makatchev & Tso, 2000), ORCA (ORCA, 2005),
(Brooks, Kaupp, Makarenko Williams & Oreback 2005)
and the Nucleus robotic control toolkit (Nucleus, 2005).
DARTS/Dshell is a high-fidelity dynamics simulator that
models the motion of flexible multi-body systems under
internal and external interactions. It has been used to
model robotic systems and spacecraft. Applications
include hardware-in-the-loop testing and off-line
simulations. In the sequel we will show how
DARTS/Dshell’ model representation is used in the
mechanism model context.
The original goal of the OROCOS effort was to develop
open source software for robotics applications. It has
since branched into two separate developments:

• Open Real-time Control Services for real-time
control applications

• Open Robot Control Software that provides
class libraries and a framework for robot
applications.

The Kinematics Package in OROCOS is at the design
concept stage and no software has been developed. It is

intended to address more general mechanical systems
and not be restricted to tree-topology systems. While the
objectives of the Kinematics Package have been
documented, the approach to be used for its
implementation has yet to be clearly defined.
Furthermore, due to its open source nature and lack of
funding the future of the Kinematics Package in
OROCOS is unclear. As a result, the OROCOS
Kinematics Package currently exists as a collection of
objectives without a detail description of its approach or
implementation.
OSCAR provides utilities in the form of libraries for
performing computations needed in analysis, real-time
control or simulation of manipulators. In addition to
math utilities, it contains algorithms for performing
generic forward and inverse kinematics, motion planning
and dynamics. OSCAR offers many alternative options
in its operations. For example, for motion planning,
trajectories can be generated using trapezoidal, spline or
motion blending algorithms. OSCAR currently appears
to allow only models of serial-chain manipulators.
OSCAR’s primary application is robotics education.
While OSCAR provides generic software utilities for
robot arms (serial-chain manipulators) the approach
presented in this paper models more general kinematics
systems.

1.3. Problem statement
The CLARAty architecture is a unified and reusable
software framework that provides robotic functionality
and simplifies the integration of new technologies on
robotic platforms. Being a domain-specific robotic
architecture its objective is to operate a number of
heterogeneous mobility platforms with different physical
capabilities (including serial kinematic chains ; e.g.,
manipulators, masts) and hardware architectures.
The heterogenous narture of the mechanisms supported
by CLARAty introduces the need to have a unified
representation covering mechanical and geometric
properties as well as algorithms needed for typical robot
control applications.
Furthermore, to enable CLARAty developers/users to
build new manipulators and mobility platform models
more efficiently in a more systematic manner for an
entire system, there is a need to come up with a unified
geometric, kinematic, and quasi-static representations of
mechanisms supporting serial kinematic chains, wheeled
locomotors, multi-legged locomotors, contact control,
geometric models for collision detection, generic
forward/inverse kinematics, and unified model
specification inputs.
Although the body of work presented in the literature
covers different aspects of our problem (e.g., serial
kinematic chains and real-time control), there is no
approach that covers all the types of mobilitry
mechanisms covered in CLARAty. Moreover,
eventhough the work presented in the literature provides
algorithms for robot control applications, they all seem to
lack a very important property, that of geometric
representation, to allow the integration of collision
detection algorithms. This functionality is desired in

YY

particular when the robot is expected to operate fully
autonomous and be capable to generate safe commands.

1.4. Approach
To provide a unified representation of mechanisms,
which supports heterogeneous mobility platforms with
different physical capabilities, the mobility and
manipulation group in CLARAty has developed a new
approach to modeling of robotic systems. The approach
presented in this paper, called Mechanism Model, is a
software architecture that provides a unified
representation for robotic systems, which can be used to
execute real-time control of the mechanism. The unified
representation is based on the DARTS/Dshell approach.
The primary differences between the Mechanism Model
in CLARAty and DARTS/Dshell are:

• The modeling in DARTS/Dshell is geared for
high fidelity simulations while the Mechanism
Modeling of CLARAty is geared for real-time
high-frequency control and planning. The latter
also supports overriding of generalized
solutions with specialized ones.

• DARTS/Dshell uses much more detailed
models (body flexibility, actuator and
transmission modeling, etc.,) which are needed
for high-fidelity simulations.

• Simulation software and control software solve
complementary problems (e.g. simulation
software solves the forward dynamics while
controls software solves the inverse dynamics).

• DARTS/Dshell makes extensive use of
recursive algorithms while Mechanism Model
uses corresponding iterative algorithms, which
are more amenable for on-board flight
implementations.

This article is organized as follows: Section 2 provides
the general requirements the software architecture must
address. Section 3 presents the design of the mechanism
model paradigm. Section 4 summarizes the types of
constraints handled by the architecture. Section 5
explains the model data input. Section 6 summarizes the
generic algorithms available in the architecture. Section
7 presents the relationship of this paradigm in the
CLARAty framework.

2. General requirements

In the design of the Mechanism Model paradigm, we
separated mechanism models (e.g., kinematics,
dynamics, etc.) from mechanism control to allow client
software to use and test the kinematics and dynamics of
the mechanisms independent of the hardware.
Furthermore, it was required that the Mechanism Model
supports the following computations for the mechanism
model:

• Kinematics computations—forward, inverse,
and differential kinematics.

• Quasi-static computations of forces and torques
considering: joint flexibility (stiffness), gravity
force and other applied forces, gravity
deflection.

• Environmental contact constraints—position,
force, torque, and stiffness.

• Resolution of multiple simultaneous kinematics
constraints.

• Collision detection.

Initially, full dynamics computations (inertial forces) will
not be supported. However, models will support future
extensions for dynamics computations.

2.1. Mechanism types
The types of mechanisms that can be described in the
Mechanism Model paradigm include:

• Serial manipulators—multi-degree of freedom
robotic arms, masts, and legs (e.g. a 5-dof arm
with a turret gripper carrying multiple
instruments).

• Simple closed-chain mechanisms—four- and
six-bar planar mechanisms (Figure 1).

• Wheeled locomotors—multi-wheeled
mechanisms with different drive and steering
configurations (Figure 2). This includes fully-
steerable (e.g. Rocky 8’s six-wheel drive six-
wheel steering rocker bogie mechanism),
partially-steerable (e.g, Rocky 7’s all-wheel
drive front wheel steering mechanism), and
skid-steerable mechanisms (e.g. ATRV’s).

• Legged locomotors—multiple legs attached to a
body, e.g. LEMUR robot (Figure 3).

• Composite mechanisms—any combination of
the above types (e.g. Phoenix lander and MER
rover Spirit and Opportunity (Figure 4)).

In contrast to these types of mechanisms the mechanism
model software will not directly handle parallel and
hybrid kinematic structures. However, it is possible to
model a simple parallel structure as a tree topology by
breaking the closed chain and solving for the closed
chain using joint or position constraints (Figure 1).

Actuated

(a) Four-bar
mechanism

Position
Constraint

(b) Four-bar mechanism
modeled with either (i)

position constraint, or (ii)
with non-linear joint

constraints

θ1

L1

L2

L3

L0

θ2(θ1)

θ3(θ1)

Non-linear
Joint Constraint

Actuated

Figure 1. Closed loop kinematic chains

XX

3. Mechanism model design

A mechanism is represented as a tree topology in which
an arbitrary number of rigid bodies are connected to one
another via joints. The tree topology captures the
geometric relationships between all elements in the
mechanism such as sensors and bodies, and serves as a
repository of mechanical model information, which
includes fixed (non-articulated) transformations, joint
constants that do not depend on articulation values and
component geometry. As a result, the proposed tree
representation is stateless: position, velocity, and
acceleration information relative to an inertial frame is
not stored in the mechanism model. This is an important
feature because it will enable various system states to be
updated at different rates and enable the use of different
parts of the tree at a time. It will also allow algorithms to
use the mechanism model tree to predict future states for
any given input state. The trade that is made here is the
cost of re-computing derived states vs. making copies of
mechanism model for each client application and
keeping all their internal state up to date.
From the Mechanism Model perspective there is a single
inertial frame, which acts as the root of the tree. This is
important for creating composite mechanisms from
identical components. For example, if we have a six-
legged robot with identical legs, we only need a model
for one of the legs and we can then create the robot by
inserting the leg model at the mounting point for each
leg.
Geometric information (for example for use in collision
detection) is kept in the same model tree and it is
hierarchically defined in terms of the bounding shape
information of the physical component (Figure 5).

The geometric description of a body is defined in a
manner consistent with the bounding shape proposed by
Leger (Leger, 2002). The following material is adapted
from the cited work for the sake of completeness of the
exposition.
In general, a body contains a bounding shape tree (see
Figure 5.) that describes containment relationships
among the geometric objects of a single body. The
bounding shape tree describes different levels of
granularity at which the geometry of the object is
described, having the finest bounding shape resolution at
the leaves of the tree.
Bounding shapes are represented either as 2D or 3D
shapes (e.g. we represent terrain surfaces and walls by
2D open meshes and manipulator links by 3D shapes
such as cylinders, boxes, spheres, and/or convex hulls).

4. Constraint modeling

There are two types of constraints handled by the
Mechanism Model: Joint and Cartesian constraints. Joint
constraints are constraints that couple a joint to another
through a linear or nonlinear relationship (e.g.

()ki qfq = , where q is a generalized joint coordinate).
Cartesian constraints are further divided into: end
effector and contact constraint. Contact constraints are
used to specify the desired surface contact between two
frames, while end effector constraints are used to specify
the desired absolute or relative position of a frame.

5. Model data input

Mechanism model parameters are specified in an
eXtensible Markup Language (XML) (The World Wide
Web Consortium, 2005) input file (refer to (Nesnas,
Kim, Nayar & Diaz-Calderon, 2005) for a detailed
description of the XML model data format). Each
mechanism or appendage is defined in a separate XML
file and a complete mechanism model is assembled by
reading in multiple XML files (e.g. for a mars rover we
need arm model, mast model, and mobility model are
stored in separate files).
The mechanism model file defines necessary mount
points by name to attach appendages defined in separate
model files.

(a) Phoenix
lander

(b) MER
rover

(a) Rocky 8
rover

(b) Rocky 7
rover

(c) ATRV

Figure 2. Different mobility platforms

Figure 4. Composite mechanisms

Figure 3. Legged robot

YY

The input parameter file supports the required kinematic
parameters based on the kinematic representation
selected as well as supporting the definition of center of
mass, inertia matrix, bounding shape tree. A number of
kinematic representations are supported including
homogenous transform, zero position (also known as
product of exponentials) (Murray, Li & Sastry, 1994),
Denavit-Hartenberg where the rerference frame of the i-
th body is located at the i+1-th joint (Paul, 1983),
(Spong, & Vidyasagar, 1989), and Denavit-Hartenberg
with Craig’s modification where the reference frame for
the i-th body is located at the i-th joint (Craig, 1989).
Regardless of the representation selected, model
parameters are converted to an internal representation,
which is similar to that used in DARTS/DShell.
Specifically, we treat each body as having a single joint
that ties the body to its parent in the mechanism model
tree. This approach is general enough to enable modeling
of mechanisms of various types and simplifies the
software structure (Figure 6).
The choice of coordinate frames on the bodies is not
based on DARTS/Dshell but are consisten with the
following conventions

• For single degree-of-freedom joints, the z-axis
is aligned with the articulation axis.

• For multiple degrees-of-freedom joints, the z-
axis is aligned with at least one joint axis.

• The body reference frame is located at the
center of rotation of the revolute joints.

6. Algorithms

A set of built-in algorithms needed for typical robot
control applications will be implemented in the software
package. These include generic forward and inverse
kinematics algorithms and collision detection between
objects in the model. These will be extended in the future
to include gravity compensation and dynamics analysis.
Facilities will be provided to allow users to by-pass the
generic built-in algorithms with more-efficient
customized specific implementations.

6.1. Forward kinematics algorithm
The built-in forward kinematics algorithm to determine
relative positions and orientations between coordinate
frames in the model will be performed by accumulating
relative poses between successive frames in the tree
using tree-traversal iterators to navigate between frames
on the tree. The user-interface to the software will allow
users to query a frame in the tree for its pose relative to
any other frame in the tree.

Body
Reference
Frame

Sensor
Mount
Frame

Arm mount
Frame

Center of
mass

Camera
Mount Frame

Bodyi

B1

Jointi

Bounding
Shape Tree

B2 B3 B3B4

B5

C1

B1

B2 B3

B4 C1 B5

Coarse Shape Finer Shape Finest Shape

Leaves of
tree define
finest
shape

Relative to body
reference frame

Bounding Shapes
Resolution Levels

Figure 5. A mechanical component an its bounding shape tree

XX

6.2. Inverse kinematics algorithm
A built-in generic inverse kinematics algorithm will be
implemented using a numerical approach. Constraint
managment software is used to administer the generic
solution for inverse kinematics problems based on the
type of Cartesian constraints. The solution of a general
set of Cartesian constraints that simultaneously apply to
the kinematic system, is found through an iterative
numerical approach (e.g., Newton-Raphson). In this
approach the constraint manager sets up the Cartesian
constraint vectors to solve for, and then uses a constraint
solver to determine the configuration of the kinematic
system that best solves for the set of Cartesian
constraints. This approach will handle multiple
simultaneous constraints.

6.3. Collision detection algorithm
The initial implementation of the collision detection
algorithm in this software package will be to adapt
Leger’s approach (Leger, 2002). In this approach, the
geometry of each physical object is defined with a
hierarchy of composites of bounding shapes. At high
levels in the hierarchy, one or a few geometric objects
are used to bound the physical object. At lower levels in
the hierarchy, a more refined geometric model is possible
by using many smaller objects (see Figure 5). The
efficiency of this algorithm is obtained by checking for
collisions between objects at high levels of the hierarchy
and penetrating to deeper levels only when a collision is
found to occur between high-level objects.
Although currently there is one collision detection
algorithm, the framework is general enough to support
multiple collisiton detection algorithms operating on the
bounding shape tree.

7. Interfacing mechanism model with CLARAty
control abstractions

CLARAty provides a number of control abstractions
including locomotion and manipulation abstractions. The
mechanical model for the components defined by these
abstractions is expressed in terms of the mechanism
model. In this context the mechanism model can be used
either as a stand-alone abstraction for kinematic analisys,
or as part of the control softrware for the robotic system.
When the mechanism model is used to describe
abstractions such as manipulator or locomotors interface
abstractions are defined. These interface abstractions and
their corresponding control abstractions will enable the
mechanical sub-system to be controlled independently.
For example, a system with a rover and a manipulator
arm can be treated as two independent control systems
by utilizing the Manipulator_Model and
Wheeled_Locomotor_Model interfaces for the arm and
the rover respectively (Figure 7). Alternatively, one can
use the Mechanism_Model anstraction to simultaneously
coordinate the arm with the rover motions.

8. Acknowledgements

The work described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract to the National Aeronautics
and Space Administration. The authors would like to
acknowledge and thank Anne Wright, Raymond Cipra,
Max Bajrachara and Daniel Clouse for their
contributions.

9. References

Brooks, A., Kaupp, T., Makarenko, A., Williams, S. &
Oreback, A. (2005). Towards Component-Based
Robotics, Principles and Practices of Software

Bodyi+1
Bodyi-1

Bodyi
Jointi Jointi+1

to tip (outward)to base (inward)

Sensor Frame

Frame A

Bodyi+2

Jointi+2Refere ce n
Frame

Inertial Frame

root_body

F

Refere ce n
Frame

Figure 6. Mechanism model: bodies and joints

YY

http://robotics.unibg.it/sdir2005/b02.pdf
http://robotics.unibg.it/sdir2005/b02.pdf

Development in Robotics (SDIR2005), ICRA2005
Workshop, Barcelona, Spain, April 2005.

Craig, J. J. (1989). Introduction to robotics, mechanics
and control, Addison-Wesley, Reading,
Massachusetts.

CLARAty (2005), http://clarity.jpl.nasa.gov
Jain, A. (1991). Unified Formulation of Dynamics for

Serial Rigid Multibody Systems, Journal of
Guidance, Control and Dynamics, vol. 14, pp. 531-
542.

Kapoor, C. & Tesar, D. (1998). A reusable operational
software architecture for advanced robotics,
Proceedings of the Twelfth CSIM-IFToMM
Symposium on theory and Practice of Robots and
Manipulators, Paris, France, July 1998.

Leger. C. (2002). Efficient Sensor/Model Based On-Line
Collision Detection for Planetary Manipulators,
Proceedings of 2002 ICRA.

Makatchev, M. & Tso, S. K. (2000). Human-Robot
Interface Using Agents Communicating in an XML-
Based Markup Language, Proceedings of the 2000
IEEE International Workshop on Robot and Human
Interactive Communication, Osaka, Japan, September
2000.

Murray, R. M, Li. Z & Sastry, S. S. (1994). A
Mathematical Introduction to Robotic Manipulation,
CRC Press, Boca Raton.

Nesnas, I.A., Wright, A., Bajracharya, M., Simmons, R.
& Estlin, T. (2003). CLARAty and Challenges of
Developing Interoperable Robotic Software, invited
to International Conference on Intelligent Robots and
Systems (IROS), Nevada, October 2003.

Nesnas, I.A., Kim, W.S., Nayar, H.D. & Diaz-Calderon,
A. (2005). CLARAty: Mechanism model software
design document, JPL Technical Report No.
NNNNN, Available from http://clarity.jpl.nasa.gov

Nucleus (2005).
http://www.energid.com/site/nucleus.htm

ORCA (2005). http://orca-
robotics.sourceforge.net/index.html

OROCOS (2005). http://www.orocos.org/
OSCAR (2005).

http://www.robotics.utexas.edu/rrg/research/oscarv.2/
Paul, P. R. (1983). Robot manipulators: Mathematics,

programming, and control, MIT Press, Cambridge,
Massachusetts.

RoboML (2005). http://www.roboml.org/
Rodriguez, G., Kreutz-Delgado, K. & Jain, A. (1991). A

Spatial Operator Algebra for Manipulator Modeling
and Control, The International Journal of Robotics
Research, vol. 10, pp. 371-381.

Spong, M. W. & Vidyasagar, M. (1989). Robot dynamics
and control, John Wiley & Sons.

Volpe, R., Nesnas, I.A.D., Estlin, T., Mutz, D., Petras, R.
& Das, H. (2001). The CLARAty Architecture for
Robotic Autonomy, Proceedings of the 2001 IEEE
Aerospace Conference, Big Sky Montana, March
2001.

The World Wide Web Consortium (2005). Extensible
Markup Language (XML), htttp://www.w3.org/XML

Manipulator_Model

Device

Mechanism_Model

R8_Arm_Model

Manipulator

R8_Arm

Device Device_Group

Motor_Group Motor

Trajectory
Generator

R8_Motor

Generic classes

Robot Adaptation

ME Body

ME Joint

Figure 7. Example of using Mechanism_Model with Manipulator control classes. Similar structures will be used
for Wheel_Locomotor and Legged_Locomotor classes.

XX

http://www.energid.com/site/nucleus.htm
http://orca-robotics.sourceforge.net/index.html
http://orca-robotics.sourceforge.net/index.html
http://www.orocos.org/
http://keuka.jpl.nasa.gov/main/overview/publications/01_volpe_claraty_aerospace.pdf
http://keuka.jpl.nasa.gov/main/overview/publications/01_volpe_claraty_aerospace.pdf

	Introduction
	Motivation
	Related work
	Problem statement
	Approach

	General requirements
	Mechanism types

	Mechanism model design
	Constraint modeling
	Model data input
	Algorithms
	Forward kinematics algorithm
	Inverse kinematics algorithm
	Collision detection algorithm

	Interfacing mechanism model with CLARAty control abstraction
	Acknowledgements
	References

